Product Title:Â Optimizing Hospital-wide Patient Scheduling: Early Classification of Diagnosis-related Groups Through Machine Learning (PDF)
Format:
PDF,
Overview (Details, Topics and Speakers):
by
Daniel GartnerDaniel Gartner
Diagnosis-related groups (DRGs) are used in hospitals for the reimbursement of inpatient services. The assignment of a patient to a DRG can be distinguished into billing- and operations-driven DRG classification. The topic of this monograph is operations-drivenDRG classification, in which DRGs of inpatients are employed to improve contribution margin-based patient scheduling decisions. In the first part, attribute selection and classification techniques are evaluated in order to increase early DRG classification accuracy. Employing mathematical programming, the hospital-wide flow of elective patients is modelled taking into account DRGs, clinical pathways and scarce hospital resources. The results of the early DRG classification part reveal that a small set of attributes is sufficient in order to substantially improve DRG classification accuracy as compared to the current approach of many hospitals. Moreover, the results of the patient scheduling part reveal that the contribution margin can be increased as compared to current practice.
Product Details
ISBN-13: | 9783319040653 | |
Publisher: | Springer International Publishing | |
Publication date: | 06/09/2015 | |
Series: | Lecture Notes in Economics and Mathematical Systems Series, #674 | |
Edition description: | 2014 | |
Pages: | 119 | |
Product dimensions: | 6.10(w) x 9.25(h) x 0.01(d) |
Delivery Method
the Optimizing Hospital-wide Patient Scheduling: Early Classification of Diagnosis-related Groups Through Machine Learning (PDF) course/book will be provided for customer as download link. download link has NO Expiry and can be used anytime.
Contact Us
contact us to our email at [email protected] or fill in the form below:
Reviews
There are no reviews yet.